Imagerie métabolique en coupe dans la prise en charge des infections musculo-squelettiques

François Jamar, MD, PhD

Université Catholique de Louvain, Brussels, Belgium

SFMN, La Rochelle, 29th May, 2015

NM in musculo-skeletal Infections O I (C) Outline

- Introduction
- Choice of tracer
- Clinical indications of ¹⁸F-FDG-PET
 Acute (haematogenous) osteomyelitis / chronic OM
 - Infection of prosthetic material/metallic hardware

catholique de Louvain

Vertebral osteomyelitis

Diabetic foot

Summar

Question 2: bone or soft tissue? Anatomical localization: hybrid imaging

Question 1: infection or not?

Specificity of the signal

Question 3: evaluation of therapy

atholique e Louvain

- Extremely complex phenomenon involving
 - Bacterial colonization and growth
 - Inflammation
 - Bone destruction and destruction of the vasculature resulting in compression, formation of pus, spread and exacerbated bone necrosis (sequestrae)

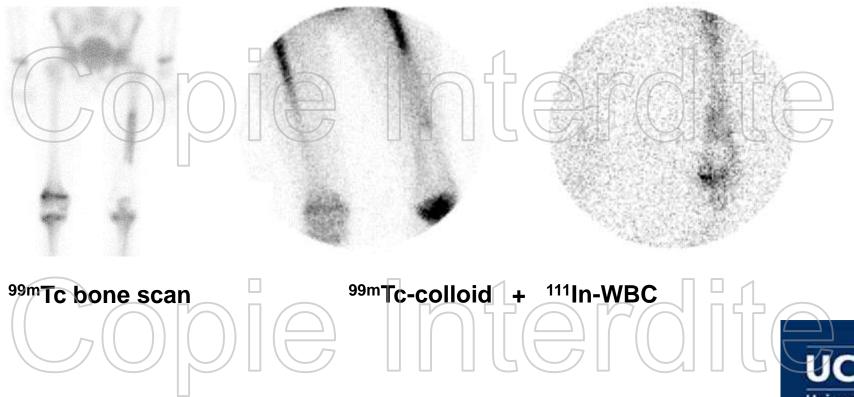
catholique de Louvain

• Haematogeneous (children & elderly): bacteremia

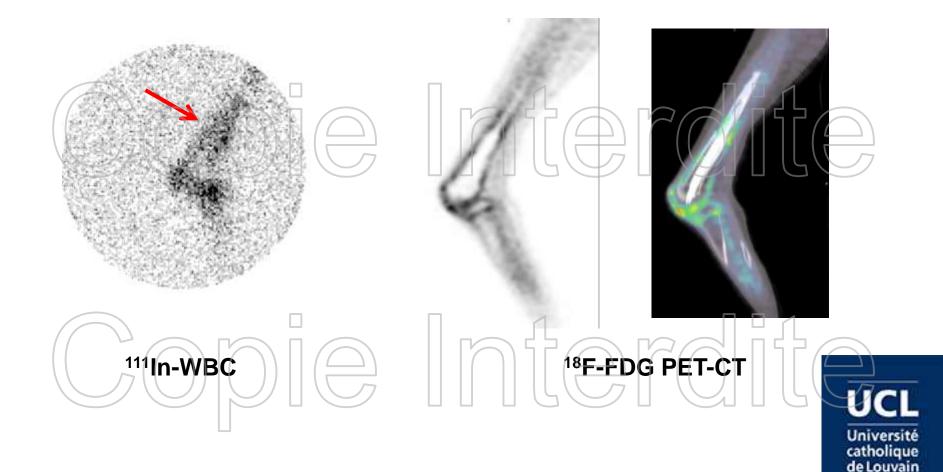
Contiguous: transmission from local infection
 Direct injury: trauma, surgery, prostheses

- Pyogenic bacterias are the most frequent
 - Staphylococcus *aureus*: 37-67%
 - Coagulase (-) Staphylococci (esp. epidermidis): 3=16%
 - Other pyogenic: Pseudomonas, Salmonella, Haemophilus, Streptococcus spp., E *Coli*,...
- Non pyogenic: Brucella *mellitensis*, Mycobacterium spp.

• Staph. aureus accounts for ~50% of surgical infections (UK Health Protection Agency 2008)


NM in musculo-skeletal Infections Introduction: diagnostic challenge

- Incidence is increasing for prosthetic material and DM
- Treatment is difficult and prolonged, hence expensive
- X-Ray (and CT) is only positive when 20-50% of the bone matrix has gone (10-21 days) and often lacks specificity
- Antibiotic resistance is (more) frequent ('small colony')

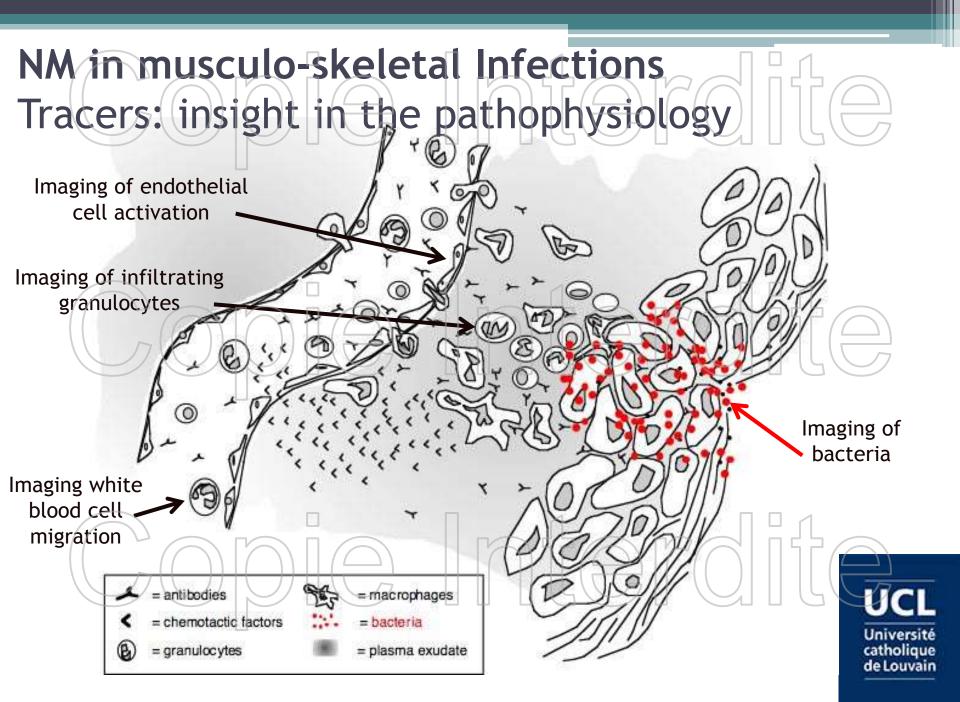

catholique de Louvain

- MRI and 3P-BS are nonspecific in the early stages
- Nuclear medicine offers ... so (too?) many options

NM in musculo-skeletal Infections Offections Tracers: which one?

NM in musculo-skeletal Infections O I (C) Tracers: which one?

Targets the enemy!


- Available, easy to use, cheap
- Good physical properties (T1/2, energy, rad. dose)
- In vivo and in vitro stability
- High sensitivity and specificity (vs inflammation)
- Rapid imaging (duration and delay)
- Marketing authorization tero to the second s

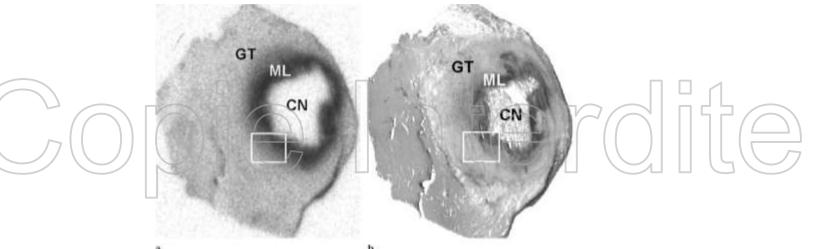
atholique le Louvain

Staph. aureus accounts for ~50% of surgical infections (UK Health Protection Agency 2008)

The target is **bacteria**!

NM in musculo-skeletal Infections Tracers: targeting bacteria? % binding at 1 h of Cipro (Hot_K 1.3 µg/ml): 37C, 4C, EtOH Killed, Heat Killed 30-25-20 CPW/CPM 0% 10 37 C 4 C EtOH killed Heat Killed

Take home message

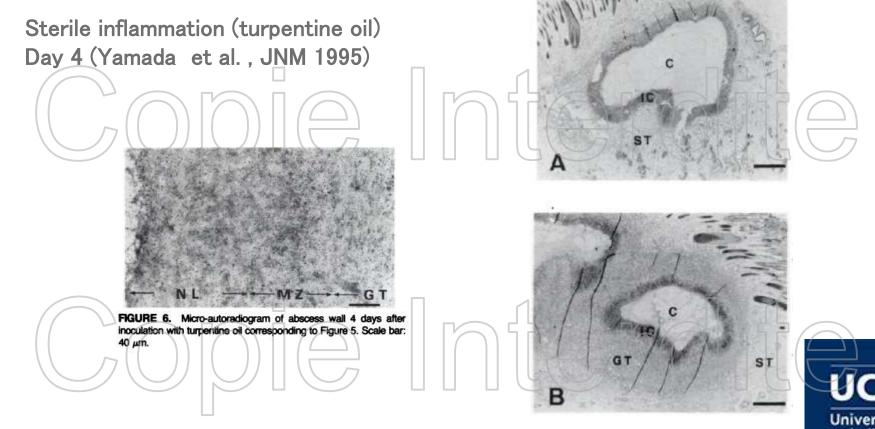

Bacteria are dispersed, low mass, low binding of radiopharmaceuticals that do not allow their in vivo detection

> catholique de Louvain

- Labelled WBC (¹¹¹In or ^{99m}Tc)
- 99mTc-labelled antigranulocyte moAb
- ¹¹¹In/^{99m}Tc-human immunoglobulin G
- ¹⁸F-FDG
- Others... (¹⁸F-FDG-WBC, ⁶⁸Ga-citrate) CODIE Interolit

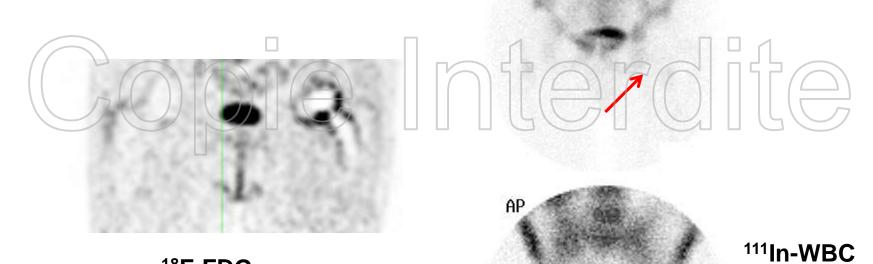
NM in musculo-skeletal Infections Tracers: ¹⁸F-FDG - a by-product of oncology

Soft tissue Staph. aureus in rats Day 9 (Kaïm et al, Radiology, 2002)



d.

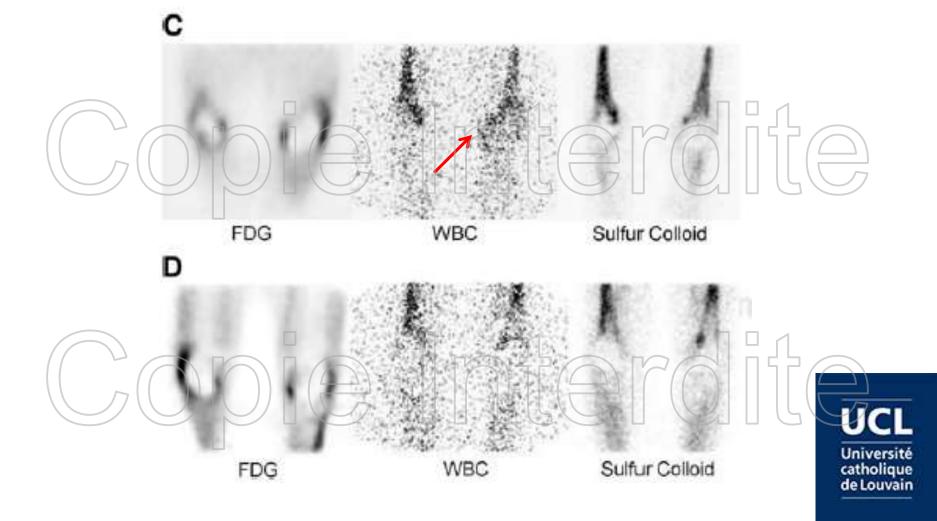
Université catholique de Louvain


GT

- Nonspecific targeting (neutrophils, monocytesmacrophages, fibroblasts,...)
 High quality whole-body imaging
- No blood handling
- Results in less than 2 hours
- Relatively cheap
 Multiple session imaging complicated

atholique

AP



¹⁸F-FDG

Université catholique de Louvain

^{99m}Tc-colloid

NM in musculo-skeletal infections Tracers: but another problem with ¹⁸F-FDG!

NM in acute osteomyelitis

- Plain X-Ray is the first-line method (MR if available)
- 3-Phase bone scanning is highly sensitive
- Labelled WBC + colloid (and antigranulocyte moAb)
 scintigraphy is highly sensitive and specific
 (~100%/95%)
 The odd burger of 180 CDET CT is lighted.

eLouvain

- The added value of ¹⁸F-FDG PET-CT is limited
 - No blood manipulation
 - Higher spatial resolution than BS or SPECT

Cople Interfor

NM in chronic osteomyelitis

Meta-analysis of published papers up to December 2011 on FDG-PET

Disease	Cases	Sens.	Spec.	Acc.
¹⁸ F-FDG	287	94.6	91.5	94.5

Meta-analysis of published papers up to December 2005 on WBC

Ċ				7 \\	<u> </u>	\square
	Disease	Cases	Sens.	Spec.	Acc.	
	Primary osteomyelitis	617	85.4	75.5	74.0	
	Secondary osteomyelitis	376	88.2	80.3	79.3	
/	Osteo-muscular infections	1803	84.8	78.9	81.6	
	Sternal wound infections	369	83.9	67.3	75.3	

Prandini et al, Nucl Med Commun, 2006

Jamar et al. J Nucl Med, 2013

catholique de Louvain

NM in chronic osteomyelitis ¹⁸F-FDG PET-CT

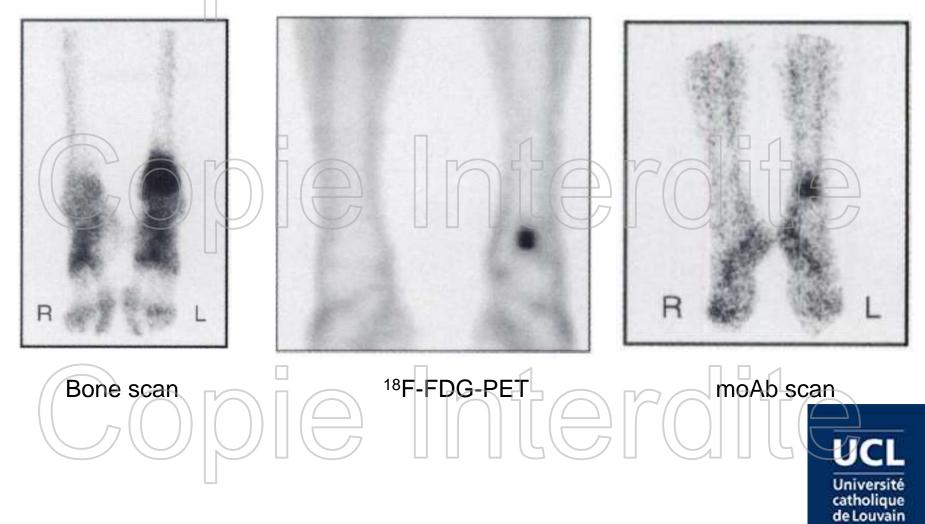
- Globally, high sensitivity (94-100%) after exclusion of dual-head coincidence scanning
- Specificity is also high with full ring PET(-CT) 87-
- Specificity depends on accurate clinical information

e Louvain

• Most studies deal with chronic OM

De Winter JBJS 2001, 83: 651

NM in subacute/chronic osteomyelitis


¹⁸F-FDG PET-CT 9 mo after open-chest surgery

NM in chronic osteomyelitis ¹⁸F-FDG PET-CT

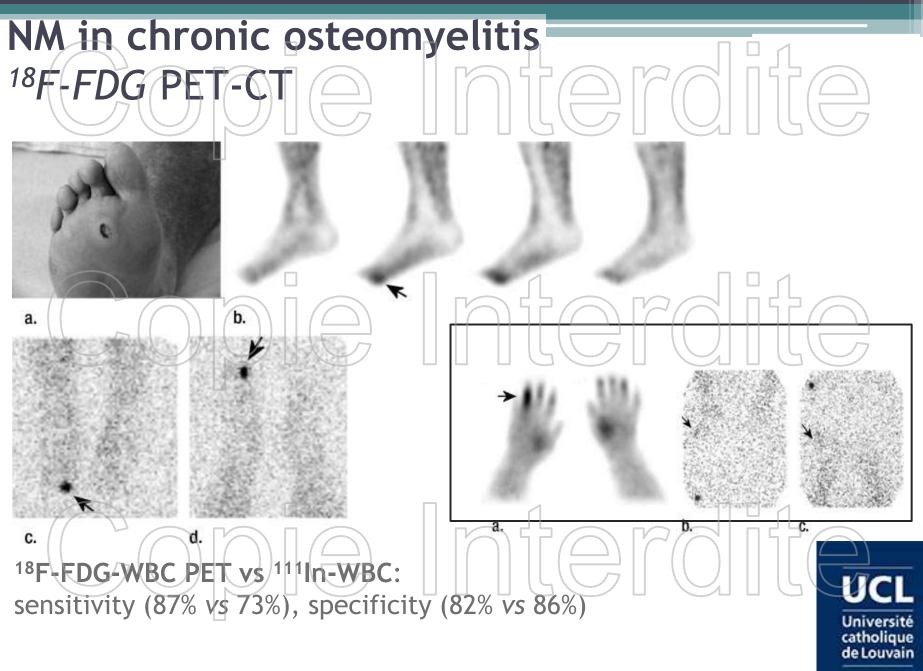
Author	year	no	Sens.	Spec.	Acc.	Proof	comparator
Guhlmann	1998	31	100	92	97	All	-
Guhlmann	1998	51	98	95	96	All	>moAb
Stumpe	2000	18	100	83	99	17	
De Winter	2001	60	100	88	93	18	(A)
Meller	2002	- 30	100	92	96	16	> ¹¹¹ In
Zhuang	2006	22	100	88*	91	18	-
Rini	2006	43	87	82	84	31	=111In
Hakim	2006	42	64	78	-	30/34	Bone SPECT
Hartmann	2007	33	94	87	91	All	> ¹¹¹ In
				*: 2 FR	due to re	ecent oste	eotomy
							Univ

 \subseteq

NM in chronic osteomyelitis

Guhlmann, JNM1998, 39: 245-52

NM in chronic osteomyelitis ¹⁸F-FDG PET-CT


Patient/ Age (y)/ Sex	Site of Suspected Osteomyelitis	Cause of Suspected Osteomyelitis	FDG PET Rating*	Final Diagnosis	Results of Bacteriologic Culture [†]	Accuracy of FDG PET [‡]	SUV∮	
/27/M	Distal femur	Fracture	4/4	Osteomyelitis	S aureus	TP/TP	2.8	SL
2/63/M	Tibia	Fracture	4/4	Osteomyelitis	S epidermidis	TP/TP	2.7	
1/42/M	Patella	Traumatic dislocation	0/0	Synovitis	No growth	TN/TN	0.2	Do
1/37/M	Tibia	Orthopedic device	4/4	Osteomyelitis	S aureus, Ε faecalis, α-hemolytic	TP/TP	6.6	Pe Ce
market -		Catherine at a day day	4/4	Osteomyelitis	streptococci S aureus	TP/TP	3.4	
/36/M	Tibia	Orthopedic device	4/4	Osteomyelitis	S aureus	TP/TP	24	
5/36/M	Hand	Fracture	4/4	Osteomyelitis	S aureus	TP/TP	2.1	
7/44/F	Hand Tibia	Orthopedic device	4/4	Osteomyelitis	S epidermidis	TP/TP	1.9	
3/37/M	Tibia	Fracture	4/4	Osteomyelitis	S aureus	TP/TP	3.6	Pe
0/66/M	Knee joint	Injury, arthroscopy	0/0	Synovitis	No growth	TN/TN	0.1	
	Distal femur	Fracture	0/0	No infection	No growth	TN/TN	0.3	Ce
1/32/F 2/41/M	Tibia	Orthopedic device	0/0	Soft-tissue infection	S aureus	TN/TN	0.2	
3/75/M	Tibia	Shin splint injury	1/1	Soft-tissue infection	S aureus, β-hemolytic streptococci	TN/TN	0.5	
4/20/M	Tibia	Orthopedic device	4/4	Osteomyelitis	S aureus	TP/TP	3.8	
5/69/F	Knee joint	Avascular necrosis, empyema	0/0	Synovitis	S aureus	TN/TN	0.2	
6/56/M	Distal femur	Fracture	4/4	Osteomyelitis	S aureus	TP/TP	8.6	
7/36/M	Tibia	Fracture	3/4	Osteomyelitis	S aureus	TP/TP	3.0	
8/63/M	Calcaneus	Orthopedic surgery	0/0	Soft-tissue infection	No growth	TN/TN	0.2	_
9/46/F	Calcaneus	Orthopedic surgery	0/0	Soft-tissue infection	S aureus	TN/TN	0.3	
20/76/F	Ankle joint	Orthopedic surgery	0/0	No infection	No growth	TN/TN	0.1	
21/32/M	Tibia	Fracture	4/4	Osteomyelitis	S aureus	TP/TP	2.2	7 [

SUV Periph+: 3.6 (2.0) Central+: 6.2 (2.7)

Periph-: 0.2 (0.1) Central-: 0.9 (0.2)

> Université catholique de Louvain

Guhlmann, Radiology 1998, 206: 749-54

Rini, Radiology, 2006, 238: 978-87

NM in chronic osteomyelitis ¹⁸F-FDG PET-CT e Interolite

FDG-PET appears globally equivalent to or slightly less performant than labelled WBC scintigraphy

Advantages Rapid imaging No blood handling Not impaired by metallic implants All-in one technique Low BM uptake Solute physiology Inconvenients Access limited Lack of funct spec. Artifacts with metal (CT)

Lower sens. in diabetics? Cost Reimbursement

> catholique de Louvain

NM in chronic osteomyelitis ¹⁸F-FDG PET-CT e Interolite

Limitations

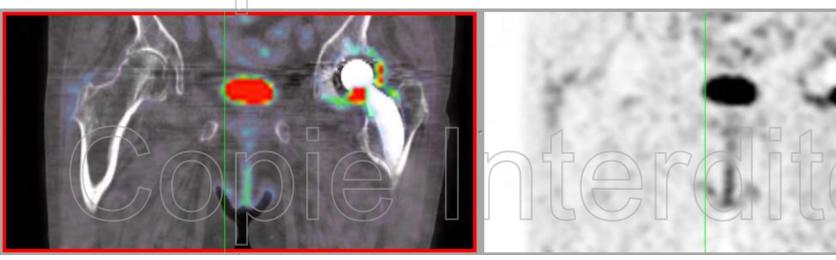
- The level of evidence remains low (2b at best)
- No clear report on the diagnostic impact of CT
- Limited information about acute OM
- Perfomances may be different in selected groups
 Limited direct comparison with MRI

 At this stage, overall substitution of WBC scan by ¹⁸F-FDG-PET(CT) cannot be recommended
 CODIE

NM in prosthetic joint infection (11)

- Becomes extremely frequent nowadays
- 8% will require revision
 5-15% may be infected (70% mech. loosening)
- Major impact on treatment (success, symptoms, costs,...)

le Louvain


 3-Phase bone scan available everywhere Sensitivity / specificity: 78% / 84% (hip)
 Sensitivity / specificity: 87% / 71% (knee)

NM in prosthetic infection erolite WBC scanning

sensitivity - alone: 88% +colloids: 97%
 specificity - alone: 78% +colloids: 97%
 Very little data in low prevalence groups

NPV before revision probably around 85-90%

NM in prosthetic infection erolite ¹⁸F-FDG-PET?

NM in prosthetic infection erolite ¹⁸F-FDG-PET

Table III. Analysis of the ability of PET and TPBS to differentiate between loosening and infection. An incorrect diagnosis of infection rather than loosening was considered as a false positive while a diagnosis of loosening rather than infection was regarded as a false negative

True positive	31	.17	
True negative	56	51	
False positive	3	16	
False negative	2	8	
Total	92	92	
Sensitivity	0.94	0.68	
Specificity	0.95	0.76	
Negative predictive value	0.97	0.86	
Positive predictive value	0.91	0.52	
Accuracy	0.95	0.74	
* PET, positron-emission tomog	araphy	$\bigcirc 7 \square$	

catholique de Louvain

Reinartz et al., JBJS, 2005

NM in prosthetic infection erolite ¹⁸F-FDG-PET

• Very variable sensitivity and specificity

Sens: 22-100% @ Interdite

Criteria for assessment vary from study to study

Copie Interdities

de Louvain

Jiue et al., Nucl Med Commun, JBJS, 2015

NM in prosthetic infection ¹⁸F-FDG-PET - Interpretation criteria

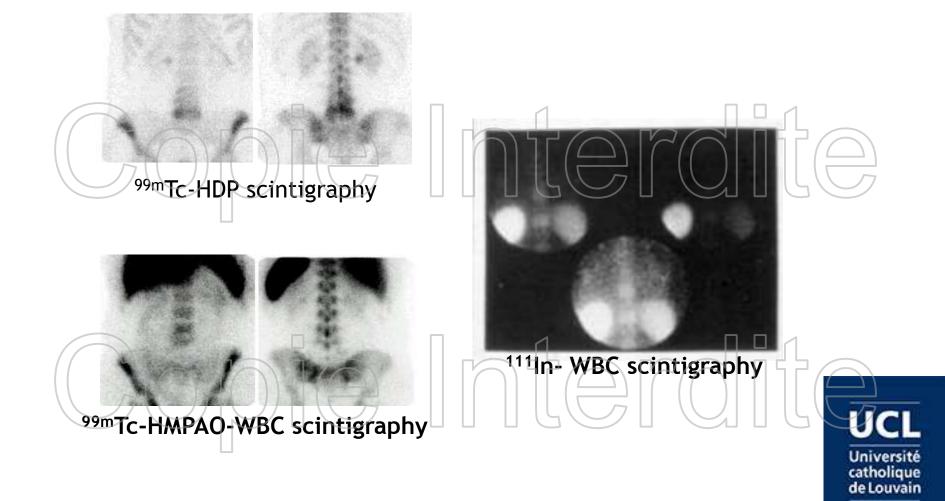
b

Reinartz et al., JBJS, 2005

NM in prosthetic infection ¹⁸F-FDG-PET - Interpretation criteria

Table I. Patterns of PET^{*} findings and their clinical correlates in patients with a THA

Pattern	Description	Clinical correlation
1 2 3a 3b 3c	No increased uptake of FDG [†] in the prosthesis-tissue interface Increased uptake of FDG in the area of the femoral neck Increased uptake of FDG in the area of the femoral neck and in parts of the prosthesis-bone interface of the acetabular cup without covering the whole cup Increased uptake of FDG in the area of the femoral neck and in parts of the prosthesis-bone interface of the proximal stem Pattern 3a and 3b	No loosening
4a 4b 4c	Increased uptake of FDG in the area of the femoral neck and in the whole prosthesis-bone interface of the acetabular cup Increased uptake of FDG in the area of the femoral neck and in wide parts of the prosthesis-bone interface of the stem Pattern 4a and 4b	Loosening
5	Uptake of FDG in the periprosthetic soft tissue	Infection
18F-	FDG: most publications since 2001 w/o CT Hip: Sensitivity 85% / Specificity 90% Knee: Sensitivity 85% / Specificity 98%	Universite
		de Louva
nartz	et al., JBJS, 2005	


NM in prosthetic infection erolite ¹⁸F-FDG-PET

FDG-PET in patients with painful hip and knee arthroplasty: technical breakthrough or just more of the same? P. Reinartz, QJNM, 2009

...data indicate that PET is highly effective ... Whether this holds true for PET-CT has yet to be proven...

Université catholique de Louvain

NM in vertebral osteomyelitis /(spondylo)discitis

NM in vertebral osteomyelitis/(spondylo)discitis

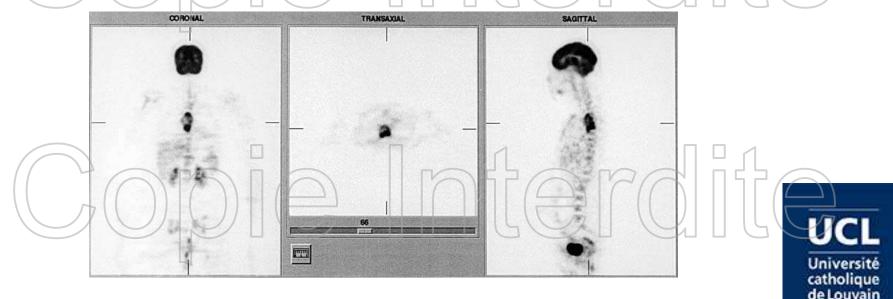
- Can involve the disk alone or both the disk and adjacent vertebra(e)
- Haematogenous or post-injury (surgery)

WBC scanning is inadequate because of the vascular spasm that results in no migration of living leukocytes Sensitivity - hyper: 39% hypo: 54% total: 93% Specificity - hyper: 98% hypo: 32% total: 50%

MRI is clearly more performant but limited due to access and metallic implants in postoperative cases

catholique de Louvain NM in vertebral osteomyelitis/(spondylo)discitis ¹⁸F-FDG PET • Prospective, 57 patients with previous spinal surgery

• 15 with infection, no bacteriology in all cases


Sensitivity: 100% If the Sensitivity: 100% If the sensitivity: 100% If the sensitivity over all I if the sensitity over all I if the sensitivity over all I

No metallic implants (n=27): 2 FP within 6 mo of surgery
 Metallic implants (n=30): 6 FP overall of ff

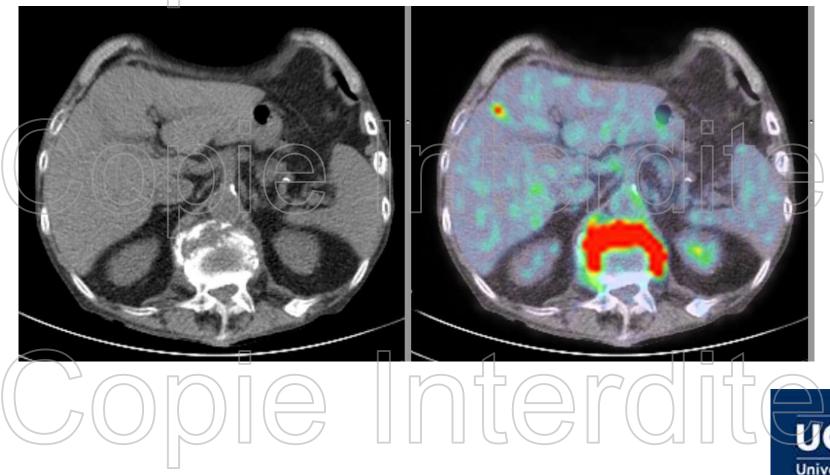
de Louvain

NM in vertebral osteomyelitis/(spondylo)discitis ¹⁸F-FDG PET

- Differential diagnosis of compression fractures is a difficult challenge
- Preliminary data suggested that SUV could discriminate with osteoporotic fracture SUV (spondylo): 7.5 (3.8) vs 1.4 (0.7) (osteoporotic

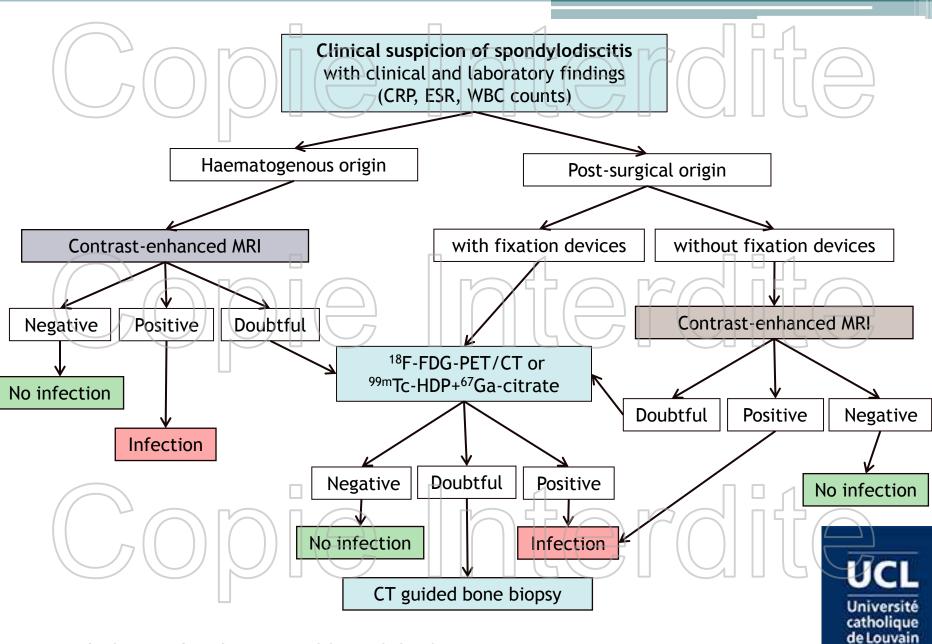
Schmitz et al. (Osteoporosis Int 2002 and Eur J spine 2001)

True Negative


True Positive

de Louvain

Stumpe, Am J Roentgenol, 2002, 179: 1151-7



Université catholique de Louvain

NM in vertebral osteomyelitis/(spondylo)discitis ¹⁸F-FDG PET

- Limited information in the literature
- All go in the same (good) direction for FDG-PET
- One study in low back pain and patients with Modic type 1 signal (low T1/high T2), showed 100% sensitivity and 100% specificity (Ohtori, Spine 2010, 35:1599-603)
- The evidence seems sufficient for second-line use and PET-CT can be recommended when MRI is not
 accessible/feasible
 Also interesting in FUO // CAVE SUV vs tumor

e Louvain

Jutte et al. Q J Nucl Mol Imaging 2014;58:2-19

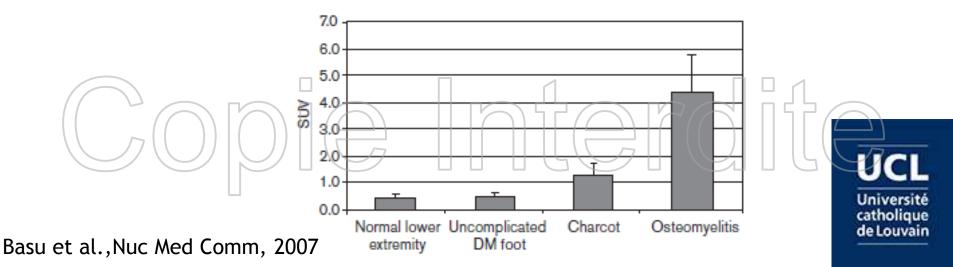
Management of osteomyelitis of the foot in diabetes mellitus

Èran Game

FDG PET-CT even not cited...

« Identifies MRI as superior to X-ray and CT, prior to biopsy, before deciding for surgical or conservative treatment of suspected OM in diabetic foot that may occur in ~20% of DM patients with ulcers and Charcot osteoarthropathy »

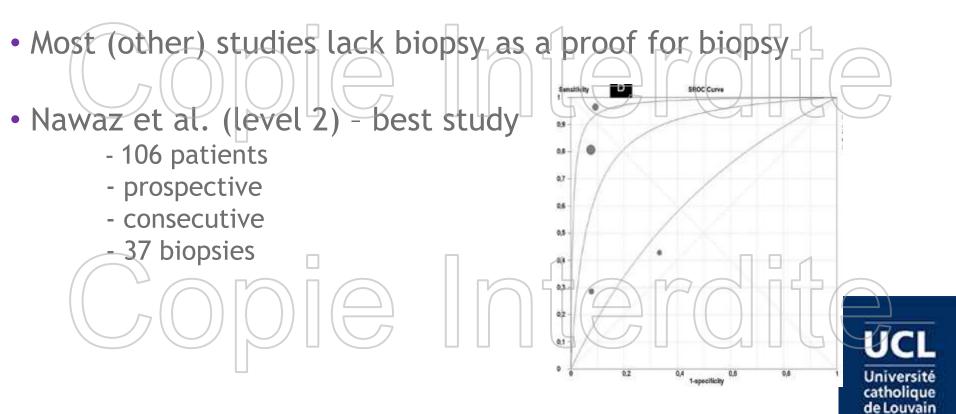
> Université catholique de Louvain


NM in diabetic foot infection rollite

- Bone scan is very sensitive but nonspecific (vs Charcot!)
 WBC scanning is sensitive and specific but lacks anatomical resolution
- ¹⁸F-FDG PET/CT is promising but data are conflictual (clearly helps with anatomic delineation, bone vs soft tissue infection)

catholique de Louvain

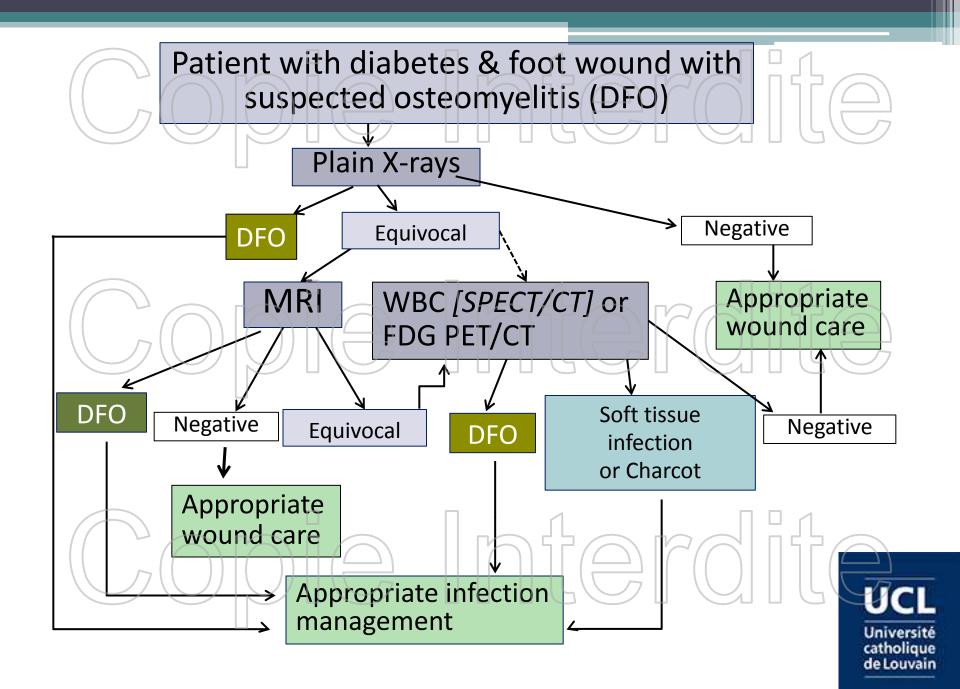
NM in diabetic foot infection


Author	Year	Pts/sites	OM/STI	Sens.	Spec.	Acc.	comparator
Höfner	2004	16/39	0	-	0	-	
Keidar	2005	14/18	8/5	100	80	94	
Basu	2007	22	6/7	100	89	94	> MR
Schwegler	2007	20	7/-	29	92	70	
Nawaz	2010	110	D 27/-	81 5	93	90	S>MR, Sp <mr< td=""></mr<>
Familliari	2011	13	7/2	43	67	54	< ^{99m} Tc-WBC

NM in diabetic foot infection ¹⁸E-FDG PET : A meta-analysis (4/44 studies)

- Highly variable sensitivity
- Variable specificity

29-100% (Pooled sensitivity: 74%) 67-93% (Pooled specificity: 90%)


Treglia et al., The Foot, 2013

NM in diabetic foot infection

Université catholique de Louvain

Keidar et al, JNM, 2005

NM in musculoskeletal infections Summary on the role of ¹⁸F-FDG PET

- Acute OM limited role (BS / WBC)
 Chronic OM WBC++ (FDG?)
 Prostheses WBC++ (FDG: no)
- Vertebral OM BS nonspecific / FDG++
- Diabetic foot WBC with BS ++ /FDG controversial

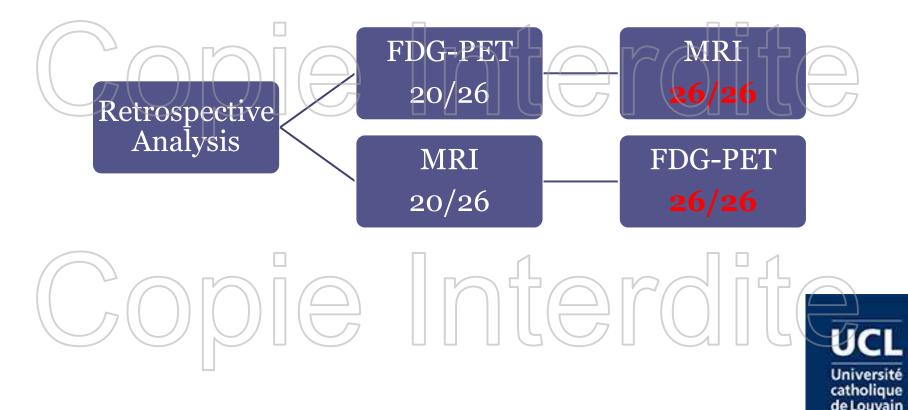
catholique de Louvain

NM in musculoskeletal infections Perspectives of molecular imaging

- ⁶⁸Ga-citrate? 18F-FDG-WBC??
- ¹⁸F-FDG-PET/MRI
- Innovative tracers for infection (antibiotics, ¹⁸F, ⁸⁹Zr)
- Large prospective trials with standardized protocols and diagnostic criteria and blinded review

This is being started under the umbrella of EANM

atholique


NM in musculoskeletal infections

Université catholique de Louvain

Patient with bacteraemia and lucent zone on X-Ray

Demirev et al., Skeletal Radiol, 2014

NM in musculoskeletal infections

Demirev et al., Skeletal Radiol, 2014